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Abstract

An analysis is made of the unsteady mixed convection from a vertical ~at plate embedded in a ~uid!saturated porous
medium[ For time t ³ 9 a uniform free stream velocity U exists parallel to the plate surface and the temperature T�

throughout the porous medium is uniform[ Then at time t � 9 the temperature on the surface is instantaneously changed
from the ambient ~uid temperature T� to Tw[ At small times the transport e}ects are con_ned within a narrow layer
adjacent to the plate[ As this inner boundary layer evolves\ a steady boundary layer is approached but far from the plate
the ambient conditions remain[ A complete analysis is made of the governing equations at t � 9\ the steady state at
large times and a series solution valid at small times is derived[ A numerical solution of the full boundary!layer equations
is then obtained for the whole transient from t � 9 to the steady state[ Results are presented to illustrate the occurrence
of transients when the buoyancy parameter is positive "buoyancy and free stream forces in the same direction# and
negative "buoyancy and free stream forces in opposing directions#[ The uniqueness of this problem lies in the fact that
we have been able to match signi_cantly di}erent pro_les at the time when the forward integration approach breaks
down and the solution at large times and establish a smooth evolution around the transition time[ Þ 0887 Elsevier
Science Ltd[ All rights reserved[

Nomenclature

f non!dimensional\ reduced streamfunction
�"1aUx#−0:1j−0:1c

F initial unsteady solution for f at j � 9\ t � 9
` magnitude of the acceleration due to gravity
G1\ [ [ [ \GN system of "N−0# nonlinear algebraic
equations
Gr Grashof number � `bK"Tw−T�#x:n1

G steady!state solution for f at j � 0\ t � �
h step length in h!direction for 9 ¾ j ¾ j�
h½ step length in h!direction for j� ¾ j ¾ 0
H small j or t solution for f
k local heat transfer coe.cient
k½ non!dimensional j increment for j� ¾ j ¾ 0
J Jacobian matrix
K permeability of the porous medium
L lower!triangular matrix

� Corresponding author

m number of grid spacings in the j!direction for
j� ¾ j ¾ 0
n number of grid spacings in the h!direction for
j� ¾ j ¾ 0
N number of grid spacings in the h!direction for
9 ¾ j ¾ j�
Nu Nusselt number � xqw:k"Tw−T�#
p\ q variable coe.cients in the governing equation for
j� ¾ j ¾ 0
Pe Pe�clet number � Ux:a
qw heat ~ux from the surface
Ra Rayleigh number � `bK"Tw−T�#x:an

Re Reynolds number � Ux:n
S sum of numerical solutions for F over consecutive j!
steps
t time
T ~uid temperature
Tw constant surface temperature\ j − 9
T� ambient ~uid temperature
u\ v seepage velocity components along x! and y!axes\
respectively
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U uniform free stream velocity
U upper!triangular matrix
x\ y Cartesian coordinates along the surface and normal
to it\ respectively[

Greek symbols
a e}ective thermal di}usivity
b volumetric coe.cient of thermal expansion
o0\ o1\ o2 tolerances in the numerical schemes
h non!dimensional transformed variable
� yðU:1axŁ0:1j−0:1

h� h value regarded as being equivalent to h � �
u non!dimensional temperature function
� "T−T�#:"Tw−T�#
U\ V expressions de_ned in equation "46#
l buoyancy parameter � `bK"Tw−T�#:Un

l9 minimum buoyancy parameter for which solutions
exist at j � 0
n kinematic viscosity
j non!dimensional transformed variable � 0−e−t

Dj non!dimensional j increment for 9 ¾ j ¾ j�
Dj9 initial non!dimensional j increment at j � 9
s ratio of composite material heat capacity to
convective ~uid heat capacity
t non!dimensional time � Ut:sx
F non!dimensional velocity function 1f:1h

F expression de_ned in equation "54#
x0\ x1\ L expressions de_ned in equation "46#
c streamfunction
v relaxation parameter[

Subscripts
i\ j evaluated at the ith and jth nodal points in the h!
and t!directions\ respectively[

Superscripts
− variables used in the j � 0\ l : � solution
� point where the forward integration approach of
Section 4[0 breaks down
g point where the forward integration approach is pre!
dicted to break down
"9# evaluated using an approximate solution[

0[ Introduction

Convective ~ow through porous media is a branch of
research undergoing rapid growth in ~uid mechanics and
heat transfer[ This is quite natural because of its impor!
tant applications in environmental\ geophysical and
energy related engineering problems[ Prominent appli!
cations are the utilization of geothermal energy\ the con!
trol of pollutant spread in groundwater\ the design of
nuclear reactors\ compact heat exchangers\ solar power
collectors\ heat transfer associated with the deep storage
of nuclear waste and high performance insulations for

buildings\ as well as the heat transfer from stored agri!
cultural products that release energy as a result of metab!
olism of the products[ The growing volume of work
devoted to this area is amply documented in the recent
excellent reviews by Nield and Bejan ð0Ł\ Kaviany ð1Ł\
Nakayama ð2Ł and Ingham and Pop ð3Ł[ There is still a
great deal of interest in this area\ both from a theoretical
and practical point of view[ On the practical side\ there
is interest in a new generation of engineering problems
connected with the topical issues of thermal insulation
engineering\ and on the theoretical side there remains a
continuous need for a comprehensive theoretical frame!
work which covers the _eld in much the same way as the
solutions of the NavierÐStokes and energy conservation
equations cover thermal convection in viscous "non!
porous# ~uids[

Most of the recent research on convective ~ow in
porous media have been directed on the problems of
steady free and mixed convection ~ows over heated bod!
ies embedded in ~uid!saturated porous media[ Unsteady
convective boundary!layer ~ow problems\ on the other
hand\ have not\ so far\ received as much attention[
Perhaps\ the _rst study on the unsteady boundary!layer
~ow on a ~at plate was made by Johnson and Cheng ð4Ł
who found similarity solutions for certain variations of
the wall temperature[ The more common cases\ in
general\ involve transient convection which is non!similar
and hence more complicated mathematically[
Subsequently\ some studies were performed to analyze
the unsteady free convection from vertical and horizontal
~at plates in Darcian or non!Darcian porous media[
Ingham et al[ ð5\ 6Ł exploited asymptotic expansions to
study the problem of transient free convection from sud!
denly cooled vertical and horizontal isothermal ~at plates
embedded in a porous medium\ while Pop and Cheng
ð7Ł and Cheng and Pop ð8Ł used the integral method to
investigate the transient free convection boundary layers
from suddenly heated isothermal horizontal and vertical
surfaces in porous media[ Further\ Ingham and Brown
ð09Ł and Merkin and Zhang ð00Ł allowed the wall tem!
perature\ or wall heat ~ux\ to vary according to a power
function of the distance from the leading edge[ More
recently\ Harris et al[ ð01Ð03Ł have produced very detailed
studies of the problem of transient free convection from
a vertical isothermal ~at plate immersed in a ~uid!satu!
rated porous medium when the temperature of the plate\
or heat ~ux\ is suddenly changed[ The interested reader
can _nd an excellent collection of papers on unsteady
convective ~ow problems over heated bodies embedded
in a ~uid!saturated porous medium in the review papers
by Pop et al[ and Bradean et al[\ which are in the book
by Ingham and Pop ð3Ł[

A review of the literature shows that very little research
has been reported on unsteady mixed convection ~ow in
porous media[ Based on the review above\ it is clear that
the unsteady mixed convection along a vertical ~at plate
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has not so far been studied[ However\ this situation is
important in cooling applications of electronic devices in
which the heat generating rate is not a constant but time!
varying[ Therefore\ the aim of the present paper is to
investigate the boundary!layer development along a ver!
tical isothermal semi!in_nite ~at plate when the tem!
perature of the plate is suddenly raised at time t � 9 from
that of the surrounding ~uid[ The governing Darcy and
energy equations are transformed using semi!similar
coordinates originated by Smith ð04Ł and very recently
extended to some forced convection heat transfer prob!
lems of viscous "non!porous# ~uids by Bhattacharyya et
al[ ð05Ł and Kumari and Nath ð06Ł[ This is the method of
semi!similar solutions\ in which the number of inde!
pendent variables is reduced from three to two by an
appropriate scaling[ The scale of time has been selected
in such a manner that the traditional in_nite region is
transformed to a _nite region\ which reduces the com!
putational time considerably[ A complete analysis is
made of the transformed boundary!layer equations for a
wide range of values of the buoyancy parameter l[ A
closed form solution of these equations has been shown
to exist at t � 9 "the initial unsteady ~ow#\ as t : � "the
_nal steady ~ow# and for small times t[ A very e.cient
step!by!step numerical solution of the full boundary!
layer equations was then obtained for the whole transient
regime when the buoyancy parameter l is positive "assist!
ing ~ow# and negative "opposing ~ow#\ respectively[ The
results are believed to be very consistent which\ poten!
tially\ make them of importance to future theoretical
studies of convective ~ow problems in porous media[

1[ Governing equations

The initial situation is that of two!dimensional\ uni!
form ~ow with constant velocity U vertically past a semi!
in_nite vertical ~at plate which is embedded in a ~uid!
saturated porous medium[ For times t ³ 9 the plate and
the surrounding porous medium are at the uniform\ con!
stant temperature T�[ At time t � 9 the temperature on
the plate is suddenly changed to Tw and maintained at
this value for t × 9[ With the usual boundary!layer and
DarcyÐBoussinesq approximations ð0Ł\ the governing
equations for the transient response are

1u
1x

¦
1v
1y

� 9 "0#

u � U¦
`bK
n

"T−T�# "1#

s
1T
1t

¦u
1T
1x

¦v
1T
1y

� a
11T

1y1
[ "2#

The conditions

u"x\ y\ t# � U\ v"x\ y\ t# � 9\ T"x\ y\ t# � T� "3#

which are valid for t ³ 9 and −� ³ x\ y ³ �\ are
replaced by the initial and boundary conditions

v"x\ 9\ t# � 9\ T"x\ 9\ t# � Tw

u"x\ y\ t# : U\ T"x\ y\ t# : T� as y : � "4#

for t − 9 and 9¾ x ³ �\ in which the free stream
velocity\ U\ and temperature\ T�\ are maintained at large
distances away from the plate surface[ Here u"x\ y\ t# and
v"x\ y\ t# denote the seepage velocity components along
the x! and y!directions\ with x being measured along
the surface starting at the leading edge and y measured
normal to it\ T"x\ y\ t# is the ~uid temperature\ b is the
coe.cient of thermal expansion\ K is the permeability of
the porous medium\ ` is the acceleration due to gravity\
n is the kinematic viscosity\ s is the heat capacity ratio
and a is the e}ective thermal di}usivity of the ~uid!
saturated porous medium[

To solve equations "0#Ð"2# for t − 9\ we introduce the
non!dimensional\ time dependent\ reduced stream!
function\ f\ and the temperature function\ u\ which are
de_ned as

c �"1aUx#0:1j0:1f"j\ h#\ u"j\ h# �
T−T�

Tw−T�

"5#

where

t �
Ut
sx

\ j � 0−e−t\ h � y$
U

1ax%
0:1

j−0:1 "6#

9 ¾ j ¾ 0 and c is the streamfunction which is de_ned
in the usual way\ namely u � 1c:1y and v � −1c:1x[
Expressions "5# and "6# correspond to the semi!similarity
transformation originated by Smith ð04Ł and presented
in Bhattacharyya et al[ ð05Ł[

Applying the transformation of variables "5# and "6#
to the governing equations "1# and "2# leads to

1f
1h

� 0¦lu "7#

and

11u

1h1
¦ðj¦"0−j# ln"0−j#Ł f

1u

1h

¦"0−j#h
1u

1h
¦1j"0−j# ln"0−j#

1f
1j

1u

1h

� 1j"0−j#$0¦ln"0−j#
1f
1h%

1u

1j
"8#

respectively\ where

l �
`bK"Tw−T�#

Un
�

Ra
Pe

�
Gr
Re

"09#

is the buoyancy parameter and the Rayleigh number\ Ra\
Pe�clet number\ Pe\ Grashof number\ Gr\ and Reynolds
number\ Re\ are de_ned explicitly as

Ra �
`bK"Tw−T�#x

an
\ Pe �

Ux
a

\
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Gr �
`bK"Tw−T�#x

n1
\ Re �

Ux
n

[ "00#

If Tw × T� the free stream and the buoyancy forces are
in the same direction and therefore the buoyancy
parameter\ l × 9 for aiding ~ows[ Alternatively\ if
Tw ³ T� the free stream and the buoyancy forces are in
the opposite direction and we have l ³ 9 for opposing
~ows[

Equations "7# and "8# can be combined to produce a
partial di}erential equation governing the evolution of
the function f alone]

12f

1h2
¦ðj¦"0−j# ln"0−j#Ł f

11f

1h1

¦"0−j#h
11f

1h1
¦1j"0−j# ln"0−j#

1f
1j

11f

1h1

� 1j"0−j#$0¦ln"0−j#
1f
1h%

11f
1j1h

"01#

which must be solved over 9¾ j ¾ 0 subject to the
boundary conditions

f"j\ 9# � 9\
1f
1h

"j\ 9# � 0¦l\
1f
1h

"j\ �# � 0[ "02#

2[ Initial unsteady and _nal steady solutions

The governing partial di}erential equation "01#\ and
the associated boundary conditions "02#\ permit separate
reductions to ordinary di}erential systems governing the
pro_les of the non!dimensional velocity and temperature
functions in the initial unsteady state at j � 9 and the
_nal steady state at large times given by j � 0[ The system
for the initial unsteady situation admits a closed form
solution[ The system for the large time steady state solu!
tion cannot be solved explicitly but is investigated both
for l large and l in the vicinity of l � 9[ A complete
analysis of the behaviour of the large time solution with
variations in the buoyancy parameter l is made in Section
5[0\ where a numerical analysis of the governing ordinary
di}erential system is carried out[

The Nusselt number\ Nu\ is de_ned in terms of the
local heat transfer coe.cient\ k\ and the heat ~ux from
the surface\ qw\ according to the relationship

Nu �
xqw

k"Tw−T�#
� −

x
Tw−T�0

1T
1y1by�9

[ "03#

Introducing the variables "5# and "6#\ we obtain the ratio

Nu

Pe0:1
� −"1j#−0:1 1u

1h
"j\ 9# � −

0
l
"1j#−0:1 11f

1h1
"j\ 9#

"04#

using the Pe�clet number\ Pe\ de_ned in equation "00#[

2[0[ Initial unsteady solution at j � 9

The initial solution pro_le at j � 9\ corresponding to
t � 9\ can be derived by applying the reduction j � 9 to
the governing equation "01# and the associated boundary
conditions "02#[ The function f"9\ h# � F"h# then satis_es
the ordinary di}erential system

F1¦hFý � 9

F"9# � 9\ F?"9# � 0¦l\ F?"�# � 0 "05#

where prime denotes di}erentiation with respect to h\
which possesses the closed form solution

F"h# � h¦l6h erfc 0
h

z11¦X
1
p$0−e−

h1

1%7[ "06#

The non!dimensional velocity function pro_le at j � 9\
given explicitly as

F?"h# � 0¦l erfc 0
h

z11 "07#

can then be used to obtain the non!dimensional skin
friction coe.cient at the plate surface in the initial
unsteady state\ namely

Fý"9# � −lX
1
p
[ "08#

2[1[ Steady solution at j � 0

The transport of energy at j � 0\ corresponding to t :
�\ is steady and hence f"0\ h# � G"h#\ say\ so that\ from
equation "01#\ G"h# satis_es the ordinary di}erential
equation

G1¦GGý � 9 "19#

which has to be solved subject to the boundary conditions
"02# which reduce to

G"9# � 9\ G?"9# � 0¦l\ G?"�# � 0[ "10#

The con_guration at j � 0\ and therefore also the gov!
erning ordinary di}erential system equationss "19# and
"10#\ can be derived as a special case of the general dis!
cussion of mixed convection about inclined surfaces pre!
sented in Cheng ð07Ł[ The behaviour of the solution of
the systems "19# and "10# as the parameter l is varied
was also determined numerically by Merkin ð08Ł[ In the
discussion that follows a brief analysis is made for =l= ð 0
and as l : � and the variation in l is interpreted in
terms of the resultant ~ow situations using a numerical
analysis in Section 5[0[

For l � 9\ equation "19# subject to the boundary con!
ditions of equation "10# admits the closed form solution

G"h# � h[ "11#

It is also possible to obtain an approximation to the
solution of equation "19# for G"h# in the vicinity of l � 9[



S[D[ Harris et al[:Int[ J[ Heat Mass Transfer 31 "0888# 246Ð261 250

In this case we seek a power series solution of equation
"19# of the form

G"h# � s
�

i�9

Gi"h#li "12#

which is valid for =l= ð 0[ Directly substituting the expan!
sion "12# into the ordinary di}erential equation "19# and
the boundary conditions "10# and equating coe.cients
of powers of l up to second order leads to the three
systems de_ning the _rst three functions G9\ G0 and G1\
namely

G91¦G9Gý9 � 9

G9"9# � 9\ G?9"9# � 0\ G?9"�# � 0 "13#

G01¦G9Gý0¦G0Gý9 � 9

G0"9# � 9\ G?0"9# � 0\ G?0"�# � 9 "14#

and

G11¦G9Gý1¦G0Gý0¦G1Gý9 � 9

G1"9# � 9\ G?1"9# � 9\ G?1"�# � 9[ "15#

The solution G9"h# of the system "13# is exactly the l � 9
solution given in equation "11#[ The function

G0"h# � h erfc 0
h

z11¦X
1
p$0−e−

h1

1% "16#

where

erfc"z# �
1

zp g
�

z

e−t1 dt

is the complementary error function\ satisfying the sys!
tem "14# and the function

G1"h# � $X
1
p 0

2
1

e−
h1

1 ¦01
−

0
1
h erfc 0

h

z11¦0
0
1

¦
0
p1h% erfc 0

h

z11
−

1

zp
erfc"h#−X

1
p$0

0
1

¦
0
p1e−

h1

1 ¦1−
0
p

−z1% "17#

satisfying the system "15# can then be used to obtain the
_rst three terms in the velocity function

G?"h# � G?9"h#¦G?0"h#l¦G?1"h#l1¦O"l2#

� 0¦l erfc 0
h

z11¦l1$0
0
1

¦
0
p1 erfc 0

h

z11
−

0
1

erfc1 0
h

z11−
0

z1p
he−

h1

1 erfc 0
h

z11
¦

0
p

e−h1

−
1
p

e−
h1

1%¦O"l2# "18#

arising from the expansion "12# and valid for =l= ð 0[
The derivative of expression "18# can be obtained and

evaluated at h � 9 to give the non!dimensional skin fric!
tion coe.cient at the plate surface

Gý"9# � −X
1
p

l00¦
0
p

l1¦O"l2# "29#

from which the ratio "04# for the _nal steady state at
j � 0 has the explicit form

Nu

Pe0:1
�

0

zp00¦
0
p

l1¦O"l1# "20#

in the vicinity of l � 9[ In the reduction l � 9\ the ratio
"20# becomes

Nu

Pe0:1
�

0

zp

and describes the case of pure forced convection[
An approximation to the solution of systems "19# and

"10# which is valid as l : � can be achieved by _rst
introducing the function GÞ"h¹#\ de_ned according to

G"h# � l0:1GÞ\ h¹ � l0:1h "21#

which satis_es the following ordinary di}erential system]

GÞ1¦GÞGÞý � 9GÞ"9# � 9\ GÞ?"9# � 0\ GÞ?"�# � 9 "22#

whose solution is independent of the parameter l[ The
behaviour of the solution G"h# at large values of l can
then be approximated using the function

Gý"9# ½ l2:1GÞý"9# "23#

from which the asymptotic value of the ratio "04#\ namely

Nu

Pe0:1
½ −

0

z1
l0:1GÞý"9# "24#

can be found once we have solved the system equation
"22# to give the value GÞý"9#[

3[ Small j and small time solutions

The function f"j\ h# satisfying the governing partial
di}erential equation "01#\ subject to the boundary con!
ditions "02#\ can be expanded as a polynomial series in
positive powers of j[ Thus we de_ne an approximation
to f"j\ h# which is valid in the region j ð 0\ equivalent to
small values of the non!dimensional time t ð 0\ by the
explicit expression

f"j\ h# � s
�

i�9

Hi"h#ji[ "25#

Substituting this polynomial series into equation "01# and
equating to zero the coe.cients of powers of j up to
terms of O"j2# leads to the following systems of ordinary
di}erential equations for the functions H0"h#\ H1"h# and
H2"h#]

H01¦hHý0−1H?0 � hHý9 "26#
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H11¦hHý1−3H?1 � hHý0¦1H0Hý9
−0

1
H9Hý9−1H?0−1H?9H?0 "27#

H21¦hHý2−5H?2 � hHý1¦1H0Hý0
−0

1
H9Hý0¦3H1Hý9−

2
1
H0Hý9−

0
5
H9Hý9

−3H?1−3H?9H?1−1"H?0#1¦H?9H?0 "28#

Hi"9# � 9\ H?i"9# � 9\ H?i"�# � 9\ i � 0\ 1\ 2

"39#

where the boundary conditions follow by extending the
expansion "25# to the original boundary conditions "02#[
The function H9"h# satis_es precisely equation "05#\
namely the system at j � 9\ and is therefore given by
equation "06#[ Closed form expressions for the functions
H0"h#\ H1"h# and H2"h# can be recovered by successively
solving the systems "26#Ð"28#\ subject to the boundary
conditions "39#\ to give

H0"h# �
0
3

lX
1
p00−e−

h1

11 "30#

H1"h# �
0
85

lX
1
p002−"2h1¦02# e−

h1

11 "31#

H2"h# �
0

273
lX

1
p024−"h3¦09h1¦24# e−

h1

11[ "32#

The resulting expression for the non!dimensional velocity
function 1f:1h "j\ h# at small values of j is given by

1f
1h

"j\ h# � 0¦l erfc 0
h

z11
¦

0
273

lX
1
p

ð85hj¦3"2h1¦6#hj1

¦"h3¦5h1¦04#hj2Ł e−
h1

1 ¦O"j3#[ "33#

Equation "7# then determines the small time evolution of
the non!dimensional temperature function\ u\ as

u � erfc 0
h

z11¦
0

081X
1
p

ð37ht¦3"2h1−4#ht1

¦2"h3−5h1¦2#ht2Ł e−
h1

1 ¦O"t3# "34#

at small times t\ using the approximate polynomial
relationship

j � t−0
1
t1¦0

5
t2¦O"t3# "35#

between j and t which follows from the de_nition "6#[
The approximation to the non!dimensional skin fric!

tion coe.cient at the plate surface

11f

1h1
"j\ 9# � lX

1
p0−0¦

0
3

j¦
6
85

j1¦
4

017
j21¦O"j3#

"36#

derived from equation "33#\ can then be used to predict
the behaviour of the ratio "04# for small values of j as

Nu

Pe0:1
�

0

zp$j
−0:1−

0
3

j0:1−
6
85

j2:1

−
4

017
j4:1%¦O"j6:1#[ "37#

In terms of the non!dimensional time\ t\ the initial evol!
ution of the skin friction coe.cient "36# and the ratio
"37# can be expressed as

11f

1h1bh�9

� lX
1
p0−0¦

0
3

t−
4
85

t1¦
0

017
t21¦O"t3#

"38#

and

Nu

Pe0:1
�

0

zp
t−0:1¦O"t6:1#[ "49#

The initial evolutions of the ratio "49# and the non!dimen!
sional temperature function u\ given in equation "34#\ are
independent of l to at least O"t6:1#\ but the steady state
solutions given in Section 2[1 show that this is not the
case as we approach j � 0[

4[ Numerical techniques

Initially the transient e}ects due to the temperature
di}erence between the free stream ~ow and the plate
surface are con_ned to a region near to the surface and
the situation can be approximated by the small j and
small time solutions developed in Section 3[ These e}ects
continue to penetrate outwards and eventually evolve
into a steady state\ boundary!layer ~ow at j � 0\ cor!
responding to t : �[ In order to match the small j\ or
t\ to the j � 0\ or large time\ solution we now develop a
numerical solution of the full boundary!layer equations
"0#Ð"2# in their non!dimensional form "01#[

The governing partial di}erential equation "01# is para!
bolic and can be integrated numerically using a step!by!
step method similar to that described by Merkin ð19Ł\
provided that the term ð0¦ln"0−j#1f:1hŁ in the
coe.cient of 11f:1j1h remains positive throughout the h

domain[ This implicit _nite!di}erence scheme enables the
solution F"h# at j � t � 9 to proceed in j and gives a
complete solution for j ¾ j�\ which is equivalent to
t ¾ t�[ The value j � j� is the maximum j reached in
the forward integration method\ which may di}er slightly
from the precise value j � j¼ satisfying the relationship

ln"0−j¼#
1f
1h

"j¼\ hm# � −0[ "40#

The solution of equation "40# represents the _rst j at
which the coe.cient of 11f:1j1h equals zero and thus the
derivative 1f:1h must be evaluated at the position h � hm
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which maximizes this velocity function[ For aiding ~ows\
l × 9\ the velocity function takes its maximum value
"0¦l# at the plate surface\ hm � 9[ For opposing ~ows\
l ³ 9\ the magnitude of the velocity function reduces as
we approach the plate surface so that the maximum value
of 1f:1h � 0 is achieved at hm � �[ Thus we obtain con!
trasting de_nitions of the value j¼ for the cases of aiding
and opposing ~ows\ namely

j¼ � 6
0−e−0:"0¦l# for l × 9

0−e−0 for l ³ 9
[ "41#

The corresponding non!dimensional time\ t¼\ at which the
forward marching numerical scheme breaks down is

t¼ � 8
0

0¦l
for l × 9

0 for l ³ 9

[ "42#

When the coe.cient of 11f:1j1h becomes negative in
some region of the h!space\ the problem is no longer well
posed and the forward integration method breaks down[

The matching of the solution at j � j�\ equivalent to
the time t � t�\ to the asymptotic steady state solution
at j � 0 may now be achieved using a variation of the
method _rst described by Dennis ð10Ł[

4[0[ Numerical solution for 9 ³ j ¾ j�

The evolution of the non!dimensional velocity function
F"j\ h# � 1f:1h is governed by the integro!di}erential
equation

1j"0−j#ð0¦ln"0−j#FŁ
1F
1j

�
11F
1h1

¦
1F
1h 6"0−j#h¦ðj¦"0−j# ln"0−j#Ł

×g
h

9

F"j\ h?# dh?¦1j"0−j# ln"0−j# g
h

9

1F
1j

"j\ h?# dh?7
"43#

which has to be solved subject to the initial and boundary
conditions

F"9\ h# � F?"h#\ F"j\ 9# � 0¦l\ F"j\ �# � 0 "44#

where the boundary condition f"j\ 9# � 9 has been incor!
porated in equation "43# and the steady state pro_le
F?"h# is given in equation "07#[

In order to proceed with a numerical analysis of equa!
tion "43#\ the h!space under investigation must _rst be
restricted to _nite dimensions[ Therefore we regard
h � h� to correspond to h � � and divide this _nite
region into N equal grid spacings of length h � h�:N[ A
variable j!step is used and the value of this step at the
start of the j!th j increment is denoted by Djj[ We also
introduce the notation Fi\j to represent the _nite!di}er!
ence approximation to the non!dimensional velocity

function F at the point h �"i−0#h for some j � jj\ where
h is a constant[

Given a complete solution Fi\j\ i � 0\ [ [ [ \N¦0\ at
j � jj we require the solution Fi\j¦0 at j � jj¦0 � jj¦Djj

and adopt the step!by!step\ _nite!di}erence procedure
described by Merkin ð19Ł[ This method is essentially an
adaptation of the CrankÐNicolson approach and
involves _rst approximating the j derivatives by central
di}erences and the remaining terms by their averages
over the j!th and " j¦0#!th steps[ Central di}erences are
then introduced to estimate the spatial derivatives and the
integrals in equation "43# are estimated using quadrature
formulae following from the trapezium rule[ Thus\ the
_nite!di}erence equation

Si¦0\j¦0:1−1Si\ j¦0:1¦Si−0\j¦0:1

−3x0"0−x0#
h1

Djj00¦
0
1

LSi\ j¦0:11"Si\ j¦0:1−1Fi\ j#

¦
0
1

h1"Si¦0\j¦0:1−Si−0\j¦0:1#$0
0
1

x0¦"0−x0#x1L1Vi\ j¦0:1

¦"i−0#"0−x0#−3x0"0−x0#L
0

Djj

Ui\ j% "45#

represents an approximation to the integro!di}erential
equation "43# evaluated at h �"i−0#h and j � jj¦

0
1
Djj\

where

Si\ j¦0:1 � Fi\ j¦0¦Fi\ j\

Vi\ j¦0:1 �
0
1

"S0\ j¦0:1¦Si\ j¦0:1#¦ s
i−0

i?�1

Si?\ j¦0:1

x0 � jj¦
0
1

Djj\ x1 �
2
1

¦1
jj

Djj

\

L � ln"0−x0#\ Ui\ j �
0
1
"F0\j¦Fi\ j#¦ s

i−0

i?�1

Fi?\j\ "46#

1 ¾ i ¾ N and j − 0[ The boundary conditions at h � 9
and h � � further require that

S0\ j¦0:1 � 1"0¦l#\ SN¦0\ j¦0:1 � 1[ "47#

The system of nonlinear algebraic equations
Gi"S1\ j¦0:1\ [ [ [ \ SN\ j¦0:1# � 9\ comprising equation "45# at
i � 1\ [ [ [ \N\ thus de_nes a set of "N−0# equations for
"N−0# unknowns[ If S "9#

i\ j¦0:1 is an approximation to the
solution of this system\ a better approximation for
Si\ j¦0:1 is de_ned by Newton|s method and obtained by
solving the resulting system of "N−0# linear equations

s
N

i�1

"Si\ j¦0:1−S "9#
i\ j¦0:1#0

1Gk

1Si\ j¦0:11
"9#

� −Gk"S "9#
1\j¦0:1\ [ [ [ \ S "9#

N\j¦0:1#\ k � 1\ [ [ [ \ N[ "48#

To solve this linear system at each iteration we decom!
pose the Jacobian matrix

Jki � 0
1Gk

1Si\ j¦0:11
"9#
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into the product J � LU of a lower!triangular matrix
L and an upper!triangular matrix U\ using the method
proposed by Doolittle and presented in Burden and
Faires ð11Ł[ Thus the inversion of the linear system
reduces to solving two systems involving the matrices L

and U by direct and backward substitution\ respectively[
This iterative process is repeated until the absolute
di}erence between successive approximations reaches a
value less than some tolerance o0[

The forward integration commences at j � 9 with the
initial increment Dj9\ which is set to some prescribed
small value\ and a j!step doubling procedure is adopted[
Given a complete solution at jj and a previous step Djj−0

the solution at j � jj¦1Djj−0 is _rst calculated using the
increment 1Djj−0 and then using two separate increments
of length Djj−0[ If the absolute di}erence between the
two solutions obtained at jj¦0 is less than a preassigned
tolerance o1 then the j!step is doubled so that
Djj � 1Djj−0[ Otherwise the j increment remains
unchanged[

4[1[ Numerical solution for j� ³ j ³ 0

At j � 0\ corresponding to large values of the non!
dimensional time t\ the solution for the non!dimensional
velocity function F"j\ h# � 1f:1h is known to satisfy the
ordinary di}erential equation "19# subject to the bound!
ary conditions "10#[ This system de_nes the steady state
con_guration for which the pro_le F"0\ h# � G?"h# can
be recovered numerically\ using the techniques presented
in Section 5[0\ for a given buoyancy parameter l[

The numerical solution described in Section 4[0 eventu!
ally breaks down at j � j� because the coe.cient of
1F:1j becomes small and is tending to negative values in
part of the boundary!layer[ The matching of the steady
state solution at j � 0 with that which is valid at j � j�
is now achieved using an adaptation of the method of
Dennis ð10Ł[

It is convenient to write the governing equation "01#
in the form

1f
1h

� F "59#

11F
1h1

¦p
1F
1h

� q
1F
1j

"50#

where

p"j\ h# � ðj¦"0−j# ln"0−j#Ł f

¦"0−j#h¦1j"0−j# ln"0−j#
1f
1j

q"j\ h# � 1j"0−j#ð0¦ln"0−j#FŁ "51#

and q"j\ h# × 9 for all h when j ¾ j�[
The system of equations "59#Ð"51# must now be solved

subject to the boundary conditions that the solution must
coincide with that obtained by the step!by!step\ forward

integration method at j � j�\ and that at j � 0 the solu!
tion is given by the steady state analysis[ Thus the com!
plete set of boundary conditions is given by

F"j�\ h# � F�"h#\ F"0\ h# � G?"h#\

f"0\ h# � G"h#\ 9 ¾ h ¾ h�

F"j\ 9# � 0¦l\ f"j\ 9# � 9\

F"j\ h�# � 0\ j� ¾ j ¾ 0 "52#

where the h!space under investigation has again been
restricted to _nite dimensions by regarding h � h� to
correspond to h � �[ A rectangular _nite!di}erence grid
with sides parallel to the h! and j!directions is constructed
using n and m grid spaces and corresponding grid sizes
h½ � h�:n and k½ � 0−j�:m\ respectively[

A _nite!di}erence approximation to equation "50# is
now achieved by replacing the h!derivatives by central
di}erences and the j!derivative 1F:1j by either a back!
ward or forward di}erence depending on whether
q"j\ h# × 9 or q"j\ h# ³ 9\ respectively[ This formulation\
using backward or forward di}erences\ ensures that the
matrix problem associated with our system of equations\
along a line of constant j\ remains diagonally dominant\
in the sense described by Varga ð12Ł\ and enables a con!
vergent solution to be achieved using standard iterative
techniques[ Thus\ equation "50# becomes

00¦
0
1

h½pi\ j1Fi¦0\j¦00−
0
1

h½pi\ j1Fi−0\ j

−01¦
h½1

k½
=qi\ j =1Fi\ j �

h½1

k½
qi\ jFi\ j "53#

for 1 ¾ i ¾ n and 1 ¾ j ¾ m\ where Fi\ j is de_ned by

Fi\ j � 6
Fi\ j¦0 if qi\ j ³ 9

−Fi\ j−0 if qi\ j × 9
"54#

and Fi\ j � F"j�¦" j−0#k½ \ "i−0#h½#[ Furthermore\ the
boundary conditions "52# require that

Fi\0 � F�""i−0#h½#\ Fi\m¦0 � G?""i−0#h½#\

fi\m¦0 � G""i−0#h½#\ 0 ¾ i ¾ n¦0

F0\ j � 0¦l\ f0\ j � 9\

Fn¦0\ j � 0\ 0 ¾ j ¾ m¦0[ "55#

To start the iterative scheme we must prescribe initial
values of f and F throughout the solution domain[ An
approximation to the initial pro_le f"j�\ h# is achieved by
integrating equation "59# using the quadrature formulae
following from the trapezium rule[ Thus\ at each j\
1 ¾ j ¾ m\ we assume initial values for fi\j\ 1 ¾ i ¾ n¦0\
and Fi\j\ 1 ¾ i ¾ n\ such that they follow a linear variation
from the known solutions at j � j� and j � 0[ Initial
approximations for the functions pi\j and qi\j follow from
equation "51# by using a central!di}erence for the term
1f:1j[

The iterative technique for solving the _nite!di}erence
system "53#Ð"55# now proceeds as follows]
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"i# Fix the values of f\ p and q throughout the domain
and perform one complete sweep of the system "53#Ð
"55# by the GaussÐSeidel method to calculate the
new values of F[ The grid points are swept along
lines of constant j in the increasing h!direction\ star!
ting from j � j�¦k½ and _nishing at j � 0−k½ [ To
increase the rate of convergence a successive over!
relaxation procedure was employed with relaxation
factor v[

"ii# Integrate the di}erential equation "59# step!by!step
along each line of constant j\ using quadrature for!
mulae based on the trapezium rule[

"iii# Using central di}erences to approximate the deriva!
tive 1f:1j\ values of p and q are re!calculated
throughout the domain[

"iv# Continue to perform steps "i#Ð"iii# until conver!
gence\ i[e[ until the average of the absolute di}erence
in F over the domain between successive iterations
falls below a prescribed tolerance o2[

5[ Results

5[0[ Numerical solution of the ordinary differential sys!
tems

The solution of both the ordinary di}erential equation
"19#\ subject to the boundary conditions "10#\ which gov!
erns the solution behaviour for the _nal steady state at
j � 0 at all values of l\ and the ordinary di}erential
system "22#\ which governs the solution behaviour for
the _nal steady state when l Ł 0\ can be achieved using
the NAG routine D91HAF[ This algorithm solves two!
point boundary!value problems for systems of _rst!order\
ordinary di}erential equations using a RungeÐKuttaÐ
Merson method and a Newton iteration in a shooting
and matching technique[ In this numerical procedure\ an
absolute error tolerance must be supplied and the upper
range of integration must be speci_ed at some _nite value
instead of in_nity[ In all the solutions of the system "19#\
"10# presented in this paper a tolerance of 09−7 and an
endpoint of h� � 01 were used as it was found that any
further decrease and increase\ respectively\ of the values
did not produce results which showed any further sig!
ni_cant variation[ However\ for the solution of the system
"22# it was necessary to advance the upper boundary to
h� � 05 to achieve the same conclusions[

The ordinary di}erential system "19#\ "10# was ana!
lysed by Merkin ð08Ł\ wherein it was shown that solutions
can only be achieved for l − l9 and\ furthermore\ that
the solution is only unique for l − −0[ The lower bound
on l is given by l9 � −0[243097 and the solutions for
the non!dimensional skin friction coe.cient at the plate
surface Gý"9#\ over a range of values of l in the vicinity

of l � 9\ are presented in Fig[ 0"a#[ At l � −0 the single
solution is the well known Blasius solution[ For
l9 ³ l ³ −0 two solutions exist\ one continuing from
the Blasius solution and the other such that Gý"9# : 9 as
l : −0\ but this solution does not exist at l � −0[ Thus\
we obtain a physically relevant solution only for l − −0\
i[e[ the buoyancy parameter is such that the non!dimen!
sional ~uid velocity at the plate surface is never negative[
Figure 0"a# also demonstrates that the expression "29#
for Gý"9# in the vicinity of l � 9 provides an approxi!
mation to the non!dimensional skin friction coe.cient
which is graphically indistinguishable from the numerical
solution over the range =l= ¾ 9[24[

The behaviour of the numerical solution of the system
"19# and "10# for Gý"9# at large values of l is dem!
onstrated in Fig[ 0"b#[ The function "23#\ which approxi!
mates the non!dimensional skin friction coe.cient in the
case of pure free convection\ follows by a numerical solu!
tion of the system "22# from which we _nd
GÞý"9# � −9[516444[ Thus\ it can be seen in Fig[ 0"b# that

Fig[ 0[ The variation in the non!dimensional skin friction
coe.cient at the plate surface Gý"9# for the _nal steady state
with the buoyancy parameter l[ "a# In the vicinity of l � 9
compared with the =l= ð 0 solution "29#[ "b# At large l compared
with the l : � solution "23#[
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the function "23# provides an asymptote to which the
non!dimensional skin friction coe.cient tends as l : �[

Cheng ð07Ł obtained the values of the ratio Nu:Pe0:1

for pure free convection and pure forced convection
numerically and\ furthermore\ subdivided the parameter
space l − −0 to provide us with the following approxi!
mate criteria for pure or mixed convection]

−0 ¾ l ³ −9[04\ mixed flow

−9[04 ³ l ³ 9[04\ pure forced convection

9[04 ³ l ³ 05\ mixed flow

05 ³ l\ pure free convection[ "56#

Examples of the pro_les of the non!dimensional velocity
function 1f:1h"0\ h# � G?"h# and the non!dimensional
temperature function u"0\ h# � l−0"G?"h#−0# over the
range l − −0 in the _nal steady state can be found in
Cheng ð07Ł[ The corresponding initial unsteady pro_les
of the non!dimensional velocity F?"h# at j � 9 are pre!
sented in Fig[ 1 whilst the initial unsteady temperature
pro_le u"9\ h# � erfc"h:z1# is independent of l[ Thus\
for the _nal steady state we have\ "i# for −0¾ l ³ 9 the
~uid velocity reduces as we approach the plate and is
slower than the free stream ~ow U^ "ii# at l � 9 pure
forced convection^ "iii# for l × 9 the non!dimensional
boundary!layer thickness parameter can be shown to
reduce as l increases\ since within the boundary!layer the

Fig[ 1[ The pro_les of the non!dimensional velocity function
F?"h# in the initial unsteady state for a range of buoyancy
parameter values l − −0[

~uid velocity is becoming increasingly greater than the
free stream ~ow U^ "iv# as l : � pure free convection[

The optimum values of the parameters introduced in
Section 4[0 for the forward integration solution and Sec!
tion 4[1 for the matching technique solution of the gov!
erning equation "01# are sought over a range of suitable
values of the buoyancy parameter l[ We consider the
cases l � −0[9\ −9[0\ 9[0\ 0[9 and 09[9 separately but
discuss suitable values for these parameters mainly in
terms of the case l � 9[0[

5[1[ Results for 9 ³ j ¾ j�

The restriction to a _nite dimensional h!space was
achieved by taking h� � 01[ The e}ect on the forward
integration numerical scheme of variations from this
value of h�\ whilst keeping h constant\ was investigated
and it was concluded that any larger value of h� produced
results which were indistinguishable from those presented
in the _gures[ This observation is to be expected since the
pro_les Fý"h#\ de_ning the initial unsteady state\ and
Gý"h#\ de_ning the _nal steady state\ over the complete
range l − 0 have all fallen below 09−8 at h � 7[

The values of the tolerances o0 and o1\ as an average
error over the "N−0# unknown grid points\ were taken to
be o0 � 09−6 and o1 � 09−5\ respectively[ More restrictive
values of both tolerances were considered and found to
produce numerical results which did not show any sig!
ni_cant variation[ The observation that smaller values of
o0 produce almost identical results follows from the fact
that the iterative solution of the nonlinear system of
algebraic equations "45# rapidly approaches a limiting
value and satis_es the convergence criterion after only a
few iterations[

The initial j increment was taken to be Dj9 � 09−6 in
all the calculations presented in this paper[ Any smaller
initial j increment was soon increased after several steps
by the doubling procedure described in Section 4[0 so that
both the subsequent increments and the non!dimensional
skin friction coe.cient at corresponding instances were
almost unchanged compared to those obtained using
Dj9 � 09−6[ For the buoyancy parameters l � −0[9\
−9[0\ 9[0\ 0[9 and 09[9\ the j!step doubling criterion
leads to _nal j increments of 0[913×09−3\ 7[081×09−3\
7[081×09−3\ 0[913×09−3 and 5[3×09−5\ respectively[

The main source of variation in the solutions for the
non!dimensional ~uid velocity function 1f:1h"j\ h# and
skin friction coe.cient 11f:1h1"j\ 9# arises by considering
changes in the number of grid spaces N[ It was observed
that as N increases\ and consequently h decreases\ the
initial development of the numerical solution approaches
that of the small j solution[ The values of N considered
here were N � 199\ 399\ 799\ 0599 and 2199 with cor!
responding values of h � 9[95\ 9[92\ 9[904\ 9[9964 and
9[99264\ respectively[ A comparison of the values of the
non!dimensional skin friction coe.cient at the plate
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surface\ 11f:1h1"j\ 9#\ is presented in Table 0 for each
value of N along with the small j solution "36# at various
values of j\ and corresponding t\ for the buoyancy par!
ameter l � 9[0[ A similar comparison was carried out for
other values of the buoyancy parameter l and the solu!
tion for the skin friction coe.cient was observed to be
such that the function −0:l11f:1h1"j\ 9# remained almost
unchanged at the same value of j\ as expected from
the small j solution "36#[ The table illustrates that the
numerical solutions\ for di}erent mesh sizes\ vary most
at small times when the _nest grid produces the best
approximation to the small j solution but for larger j\
when the small j solution becomes invalid\ the _ve solu!
tions agree more closely[ The value of j at which a further
j increment would cause the forward integration method
to break down is determined numerically to be approxi!
mately j� � 9[52190\ 9[52131\ 9[48527\ 9[28231 and
9[97578 for l � −0[9\ −9[0\ 9[0\ 0[9 and 09[9\ respec!
tively\ which agree closely with the predicted values given
in equation "41#[ The solution for F � 1f:1h"j\ h# is now
continued using the method described in Section 4[1
which matches the velocity function pro_le F�"h# at
j � j�\ where the forward integration method described
here terminates\ to the steady state velocity function pro!
_les G?"h# at j � 0\ corresponding to t � �[

Figure 2 shows the variation of the non!dimensional
velocity function 1f:1h"j\ h# at various values of j\ and
corresponding times t\ for buoyancy parameters
l � −0[9 and 9[0\ calculated using h � 9[904[ The slight
improvement in accuracy of the numerical solution as a
whole is not felt to be justi_ed for the additional com!
putational time required by using smaller values of h[ By
plotting the initial unsteady pro_les at j � 9\ t � 9\ given
in equation "07#\ and the _nal steady state pro_les at
j � 0\ t : �\ as predicted by the NAG routine solution
of equation "19#\ the transition from t � 9 to t � � is

Table 0
Comparison of the small j solution "36#\ or the corresponding small time solution "38#\ with the forward integration solutions

Numerical solution using N grid spacings
Time Small j or

j t N � 199 N � 399 N � 799 N � 0599 N � 2199 t solution

9[9994 9[99949 −9[9688927 −9[9687988 −9[9686752 −9[9686793 −9[9686689 −9[9686674
9[994 9[99490 −9[9687024 −9[9686088 −9[9685853 −9[9685894 −9[9685780 −9[9685775
9[94 9[94018 −9[9677862 −9[9677954 −9[9676726 −9[9676670 −9[9676655 −9[9676651
9[0 9[09425 −9[9667389 −9[9666504 −9[9666284 −9[9666230 −9[9666216 −9[9666213
9[1 9[11203 −9[9645343 −9[9644535 −9[9644332 −9[9644281 −9[9644279 −9[9644303
9[3 9[40972 −9[9695826 −9[9695169 −9[9695092 −9[9695950 −9[9695940 −9[9695682
9[48527 9[89616 −9[9536452 −9[9536948 −9[9535822 −9[9535891 −9[9535783 −9[9540510

Comparison is for the non!dimensional skin friction coe.cient 11f:1h1"j\ 9# as predicted by di}erent grid spacings in the numerical
scheme for l � 9[0[

Fig[ 2[ Variation of the non!dimensional velocity function pro_le
1f:1h"j\ h# as a function of h at various values of j and cor!
responding times t during the evolution from the initial unsteady
state "07# to the _nal steady state G?"h#\ derived from the solution
of equation "19#[ "a# l � −0[9\ "b# l � 9[0[
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clearly illustrated[ In Fig[ 2"a#\ when l�−0[9\ the choice
of non!dimensional variables has the consequence of
causing a uniform progression from the initial pro_le to
the _nal steady state pro_le over all values of h rather
than the initial development being focused on a small
region of h!space[ In Fig[ 2"b#\ when l � 9[0\ rather than
decreasing towards the _nal steady state pro_le\ there is
an increase in the ~uid velocity function from the initial
unsteady state over the whole h!space[ The corresponding
pro_les of the non!dimensional temperature function
u"j\ h# are not presented as they can be calculated from a
simple transformation of the pro_les of the ~uid velocity
function[

The behaviour of the non!dimensional skin friction
coe.cient 11f:1h1"j\ 9# with j is illustrated in Fig[ 3 for
buoyancy parameters l � −0[9 and 9[0[ The transient

Fig[ 3[ The evolution of the non!dimensional skin friction
coe.cient at the plate surface 11f:1h1"j\ 9# with j and the small
j solution "36#\ where the transition from the solution method
of Section 4[0 to that of Section 4[1 takes place at the indicated
j � j�[ "a# l � −0[9\ "b# l � 9[0[

numerical solution is shown to develop closely following
the small j solution "36# and is graphically almost ident!
ical when j ¾ 9[24 for l � −0[9 and 9[0[ In general\ for
l × 9 the non!dimensional skin friction coe.cient at the
_nal steady state is less than the starting value at j � 9
but the numerical solution from the forward integration
approach increases from j � 9 to a value at j � j�\ which
is signi_cantly higher than the value at j � 0[ For
−0 ¾ l ³ 9\ the non!dimensional skin friction coe.cient
at the _nal steady state is again less than the starting value
but the numerical solution from the forward integration
approach now decreases with j[

In Fig[ 4 we investigate the solution of the non!dimen!
sional skin friction coe.cient in terms of the more natural
evolution variable t[ To allow a direct comparison of the
variation in the solution with l\ the dependent variable
being plotted is −0:l11f:1h1

=h�9 and hence\ according to
equation "08#\ all the evolutions must start at

−
0
l

11f

1h1 bh�9

�X
1
p

at t � 9[ For each of the buoyancy parameters l � −0[9\
−9[0\ 9[0\ 0[9 and 09[9\ the l!independent small time
behaviour\ de_ned using equation "38#\ clearly provides
an accurate initial approximation[ The fact that the for!
ward integration solutions shown in Fig[ 4 are almost
identical was observed in the discussion of Table 0[ At
the indicated points t � t� the forward integrating\
step!by!step method breaks down and we must complete
the solution by attempting to match the _nal pro_le to
the steady state pro_le at j � 0\ where the function
−0:l11f:1h1

=h�9 shows signi_cant variation with l[
The variation in the ratio Nu:Pe0:1 with di}erent buoy!

Fig[ 4[ The evolution of the function −0:l11f:1h1
=h�9 with time t

over a range of values of the buoyancy parameter l − −0 and
the small t evolution derived from equation "38#[
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ancy parameters as time evolves is shown in Fig[ 5[ The
initial evolution from the forward integration approach
is in excellent agreement with the l!independent small
time solution "49#[

5[2[ Results for j� ³ j ³ 0

The transition from the non!dimensional velocity func!
tion pro_le F�"h# � 1f:1h"j�\ h# to the steady state solu!
tion at j � 0 is\ in general\ quite non!trivial[ Indeed the
whole of the pro_les for the parameter values l × 9\ as
shown in Fig[ 2"b# for l � 9[0\ have reached values at
j � j� which are further from the _nal steady state values
than they were originally at j � 9[ The pro_les for
−0 ¾ l ³ 9 display a slightly di}erent behaviour\ but we
will see that again the matching of the pro_le at j � j�
to that at j � 0 is indirect[ The transients presented here
beyond the time at which the forward integration
approach breaks down are in contrast to the results for
some similar problems\ see for example Harris et al[ ð02\
03Ł\ where the two pro_les to be matched are relatively
similar[ Satisfactory results for a suddenly heated vertical
plate have been obtained by Ingham and Brown ð09Ł\ but
when the plate is placed in a non!porous medium\ the
coupled di}erential equations cannot be solved by means
of a smooth transition to the _nal steady state solution\
see Ingham ð13\ 14Ł[

The restriction of the solution domain to _nite dimen!
sions is achieved by retaining the value h� � 01 and the
convergence criterion was set by assigning the value
o2 � 09−02 for the tolerance[ This value produces a
numerical solution in which the peak value of the skin
friction coe.cient for l � 9[0 is thought to be accurate
to about seven signi_cant _gures for a particular set of
parameters under investigation and had to be made small

Fig[ 5[ The evolution of the ratio Nu:Pe0:1 with time t over a
range of values of the buoyancy parameter l − −0 and the small
t evolution derived from equation "49#[

due to the slow rate of convergence of this method[ The
use of the relaxation parameter v was successful in
increasing the rate of convergence[ The optimum value
was found to be the largest value for which the numerical
scheme converged and this was found to be around
0[1 ¾ v ¾ 0[3\ depending upon the buoyancy parameter
being used[

Transient numerical solutions for the non!dimensional
velocity function F � 1f:1h"j\ h# were found using spatial
mesh widths of h½ � 9[95\ 9[92\ 9[904 and 9[9964\ where
the initial pro_le F�"h# was taken to be the pro_le
obtained using the appropriate number of mesh points N
in the forward integration approach[ For the buoyancy
parameter l � 9[0\ a variety of mesh sizes k½ in the j!
direction were used for each of these four spatial meshes
to determine the evolution of the skin friction coe.cient
over the interval j� ³ j ³ 0[ As the spatial mesh was
re_ned from n � 199 to n � 399\ a signi_cant di}erence
in this evolution was observed\ especially in the vicinity
of the local maximum\ but the variation with further
re_nements to n � 799 and n � 0599 was not so large[
The computational e}ort required to proceed to a spatial
grid with n � 0599 was therefore not felt to be justi_ed[
The variation in the solution beyond j � j� and within
the vicinity of the local maximum for l � 9[0 is rep!
resented graphically in Fig[ 6 where the contrast between
di}erent mesh widths k½ using the three di}erent spatial
grids n � 399\ n � 799 and n � 0599 can be clearly seen[
The small area of "j\ 11f:1h1"j\ h## space depicted in Fig[
6 encompasses the region in which the most signi_cant
e}ect of variations in mesh widths h½ and k½ are observed[
In the cases n � 399 and n � 799\ as we re_ne the j mesh
over the range m � 299 to m � 799 grid spaces a limiting
numerical solution is approached[ This conclusion should
be expected from the _nal j increment reached in the

Fig[ 6[ A comparison of the matching method solutions achieved
in the vicinity of the local maximum of the non!dimensional skin
friction coe.cient at the plate surface using di}erent mesh sizes
in the j and h directions and the buoyancy parameter l � 9[0[



S[D[ Harris et al[:Int[ J[ Heat Mass Transfer 31 "0888# 246Ð261269

forward integration scheme which predicts that approxi!
mately m � 382 mesh spaces are required to maintain the
same j!step[ Thus\ at such values of k½ \ the transition from
the forward integration method to the matching method
is represented by a smooth skin friction coe.cient evol!
ution at j � j�[ A single solution is presented using an
n � 0599 spatial grid\ with m � 499\ to demonstrate the
minimal variation with spatial grid re_nements beyond
n � 799[

A numerical solution\ using the matching method pre!
sented in Section 4[1\ was also performed for the case
l � 9[0 using the variable t\ rather than j\ and imposing
the steady state solution to apply at some large\ but _nite\
time t � t�[ Reasonable agreement between the two
approaches was found at the same spatial mesh sizes[
However\ to reach a comparable number of grid points
around the local maximum of the skin friction coe.cient
solution would require a vast number of t mesh points[
Thus\ the matching method in terms of the j variable has
a distinct advantage over the matching method using t

in that\ when transformed back to the more natural time
evolution\ the mesh in terms of j naturally provides a
higher concentration of mesh points at smaller values of
t\ where the solution is changing most rapidly\ but a
lower concentration at later times when the solution is
asymptoting towards the steady state value[

As a further check on the accuracy of the matching
method approach\ the step!by!step method was ter!
minated at a j!value before j � j� and in the case of
l � 9[0 we ceased integration at the value j � 9[4[ The
matching method was then applied over this larger j

interval and compared against a solution achieved over
j� ³ j ³ 0 using a comparable value of k½ [ The evolution
of the non!dimensional skin friction coe.cient was found
to be very similar and in particular the same behaviour
around the local maximum was observed[

A spatial grid in which n � 799 and h � 9[904 was used
for all the solutions from the matching method presented
in Figs 2Ð5[ It was observed in the discussion of Fig[ 6
that a smooth transition from the forward integration
approach to the matching method is achieved if we
attempt to continue the j increment in use at j � j� over
to j × j�[ The solutions presented for l � −0[9\ −9[0\
9[0\ 0[9 and 09[9 have been calculated using m � 799\
499\ 499\ 0999 and 0999\ respectively\ and therefore we
have only been able to retain the same j increment in the
cases l � 29[0[ Clearly\ computational capabilities limit
the amount of re_nement that can be carried out on
the j!grid in this matching method[ Despite this loss of
accuracy\ the transition from the forward integration
method to the matching method at j � j� is still seen to
be smooth in Figs 4 and 5[

Further pro_les of the non!dimensional velocity func!
tion 1f:1h"j\ h#\ which were achieved using the matching
method beyond j � j� for buoyancy parameters
l � −0[9 and 9[0\ are included in Fig[ 2[ In Fig[ 2"a#\ the

uniform progression from the initial pro_le to the _nal
steady state pro_le over all values of h continues until
approximately j � 9[87 when the solution slightly over!
shoots the _nal steady state pro_le[ Thus\ the pro_le
at j � 0 is approached as t : � from smaller velocity
function values[ In Fig[ 2"b#\ soon after j � j�\ and more
precisely at j ¼ 9[59657\ a peak value of the solution
pro_le is achieved over all values of h[ The velocity func!
tion pro_le subsequently decreases monotonically past
the initial pro_le and progresses uniformly in h!space to
the steady state pro_le valid at j � 0\ or t : �[ The
regularity of the variation in the solution pro_le over the
whole h!space is emphasized by comparing the velocity
functions at j � 9[19041 and j � 9[74955 in Fig[ 2"b#
which are indistinguishable at graphical resolution over
all values of h[

The complete behaviour of the non!dimensional skin
friction coe.cient with j\ shown in Fig[ 3 for buoyancy
parameters l � −0[9 and 9[0\ can now be realized[ As
described for the velocity function pro_les in Fig[ 2\ for
l � −0[9 we obtain an almost monotonic decrease in
11f:1h1"j\ 9# with a small local minimum just before j � 0[
When transformed to an evolution with respect to t\
this apparently signi_cant minimum becomes graphically
negligible as it takes place over a large time interval[
Figure 3"b# depicts the development of the skin friction
coe.cient for l � 9[0 and the relatively sharp local
maximum observed\ before a steady monotonic decrease
with j towards the steady state value[

The evolutions of the function −0:l11f:1h1
=h�9 with time

at di}erent values of the buoyancy parameter l\ shown
in Fig[ 4\ demonstrate how the solutions for l × −0 all
move away fairly rapidly from the curve given by the
solution at l � −0 and pass through a minimum point
after the forward integration approach breaks down[ For
l × 9\ both the time of deviation and the time t � t�
reduce as we increase l[ Thus\ if l is large the initial
interval over which the l � −0 solution curve is traced
becomes small and the evolution rapidly approaches the
large steady state asymptotic value as we approach pure
free convection[ For −0 ³ l ³ 9\ a further solution at
l � −9[5\ using m � 799\ has been added to establish the
dependence on the buoyancy parameter[ As l approaches
−0 within this interval\ the time at which the local mini!
mum is achieved and the time interval over which the
l � −0 solution is traced both increase whilst the for!
ward integration approach still breaks down at t� ¼ 0\
as predicted by equation "42#[ The local minimum also
becomes smoother as l : −0 so that it becomes almost
graphically imperceptible at l � −0[ The evolution for
l � −0 thus represents a lower limiting solution for the
function −0:l11f:1h1

=h�9[
The pro_le of the ratio Nu:Pe0:1 at l � −0\ shown in

Fig[ 5\ again provides a limiting lower bound for the
solution at l × −0[ At a given value of l\ the solution
for this ratio approximately traces the l � −0 evolution
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before breaking away abruptly and reaching values close
to the _nal steady state ratio over a very short time
interval[ This almost constant behaviour of the ratio
Nu:Pe0:1 after deviation from the l � −0 solution sug!
gests that the evolution of the function shown in Fig[ 4
at such times can be accurately approximated by the
function −"zj:l# Gý"9# for l × −0[ To emphasize this
point these approximations have been superimposed
onto Fig[ 4[

A solution of the governing system "01# and "02# in the
special case l � 9\ when the surface temperature remains
unchanged\ can be obtained as f"j\ h# � h and u"j\ h# � 0\
from equation "5#[ Thus\ the evolutions plotted in Figs 4
and 5 apparently become indeterminate for l � 9[
However\ the behaviour of the function −0:l11f:1h1

=h�9 and
the ratio Nu:Pe0:1 at l � 9 can be achieved by a limiting
process from the known small j approximations\ which
are independent of l\ and the solutions at j � 0[ The
evolutions in Figs 4 and 5 for the case of pure forced
convection can therefore be expected to initially trace
along the l � −0 curve\ deviating from this curve at
some point between the points of deviation of the
l � 29[0 curves[ The asymptotes for the curves are then
the value z1:p for Fig[ 4\ i[e[ a return to the value at
j � 9\ and 0:zp for Fig[ 5[ The limiting process can be
achieved by constraining the curves in Figs 4 and 5 for
pure forced convection to lie between all pairs of l � 2o

solutions as o : 9[

6[ Conclusions

Unsteady mixed convection from a vertical plate
embedded in a ~uid!saturated porous medium\ which
occurs as the temperature on the surface is instan!
taneously changed from the ambient temperature T� to
a constant temperature Tw and is driven by a uniform
free stream ~ow\ has been analyzed in detail[ Transient
numerical solutions of the governing equations have been
presented over the range of physically relevant buoyancy
parameter values\ l − −0\ which model the cases in
which the buoyancy forces are both aiding and opposing
the free stream[

From an analytical investigation of the governing
boundary!layer equations we have been able to deduce
solutions for the non!dimensional velocity function\ the
skin friction coe.cient and the ratio Nu:Pe0:1 in the initial
unsteady state\ at small times and for the _nal steady
state[ The numerical solutions of the full boundary!layer
equations were found to both approach limiting evol!
utions as the mesh sizes were re_ned and agree excellently
with the small time solutions\ thus ensuring the validity
of the numerical approaches[

The most innovative result that has been observed in
this application of a standard forward integration and
matching approach to the solution of the governing para!

bolic equation lies in the fact that accurate solutions have
been achieved in the second method despite the indirect
nature of their evolutions[ The pro_les of the ~uid vel!
ocity function at the time when the step!by!step method
breaks down are often found to be further from the
known steady state pro_les than they were in the original
unsteady state[ Nevertheless\ for the complete range of
buoyancy parameters considered\ a matching solution
could still be achieved\ using the method of Dennis ð10Ł\
and signi_cantly di}erent initial and _nal pro_les\ which
approached a limiting evolution with grid re_nement[
A considerable advantage was found with the use of a
transformed\ _nite time scale in which t � � cor!
responds to j � 0[ This enabled a higher concentration
of grid points to be used at smaller times near the turning
point of the skin friction coe.cient as a function of j and
thus a smooth transition from the forward integration
approach to the matching approach could be achieved[
Similar problems have been attempted in non!porous
media\ see Ingham ð13\ 14Ł\ but the governing coupled
parabolic equations cannot be solved by means of smooth
transitions\ such as those displayed in this paper\ to the
_nal steady state solution[
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